Combining Physicochemical and Evolutionary Information for Protein Contact Prediction

نویسندگان

  • Michael Schneider
  • Oliver Brock
  • Yang Zhang
چکیده

We introduce a novel contact prediction method that achieves high prediction accuracy by combining evolutionary and physicochemical information about native contacts. We obtain evolutionary information from multiple-sequence alignments and physicochemical information from predicted ab initio protein structures. These structures represent low-energy states in an energy landscape and thus capture the physicochemical information encoded in the energy function. Such low-energy structures are likely to contain native contacts, even if their overall fold is not native. To differentiate native from non-native contacts in those structures, we develop a graph-based representation of the structural context of contacts. We then use this representation to train an support vector machine classifier to identify most likely native contacts in otherwise non-native structures. The resulting contact predictions are highly accurate. As a result of combining two sources of information--evolutionary and physicochemical--we maintain prediction accuracy even when only few sequence homologs are present. We show that the predicted contacts help to improve ab initio structure prediction. A web service is available at http://compbio.robotics.tu-berlin.de/epc-map/.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

RBO Aleph: leveraging novel information sources for protein structure prediction

RBO Aleph is a novel protein structure prediction web server for template-based modeling, protein contact prediction and ab initio structure prediction. The server has a strong emphasis on modeling difficult protein targets for which templates cannot be detected. RBO Aleph's unique features are (i) the use of combined evolutionary and physicochemical information to perform residue-residue conta...

متن کامل

Combining Evolutionary Information and an Iterative Sampling Strategy for Accurate Protein Structure Prediction

Recent work has shown that the accuracy of ab initio structure prediction can be significantly improved by integrating evolutionary information in form of intra-protein residue-residue contacts. Following this seminal result, much effort is put into the improvement of contact predictions. However, there is also a substantial need to develop structure prediction protocols tailored to the type of...

متن کامل

A mixture of physicochemical and evolutionary-based feature extraction approaches for protein fold recognition

Recent advancement in the pattern recognition field stimulates enormous interest in Protein Fold Recognition (PFR). PFR is considered as a crucial step towards protein structure prediction and drug design. Despite all the recent achievements, the PFR still remains as an unsolved issue in biological science and its prediction accuracy still remains unsatisfactory. Furthermore, the impact of usin...

متن کامل

Prediction of Protein Distance Maps by Assembling Fragments According to Physicochemical Similarities

The prediction of protein structures is a current issue of great significance in structural bioinformatics. More specifically, the prediction of the tertiary structure of a protein consists of determining its three-dimensional conformation based solely on its amino acid sequence. This study proposes a method in which protein fragments are assembled according to their physicochemical similaritie...

متن کامل

Predicting protein distance maps according to physicochemical properties

The prediction of protein structures is a current issue of great significance in structural bioinformatics. More specifically, the prediction of the tertiary structure of a protein consists in determining its three-dimensional conformation based solely on its amino acid sequence. This study proposes a method in which protein fragments are assembled according to their physicochemical similaritie...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 9  شماره 

صفحات  -

تاریخ انتشار 2014